If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x-218.75=0
a = 1; b = -30; c = -218.75;
Δ = b2-4ac
Δ = -302-4·1·(-218.75)
Δ = 1775
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1775}=\sqrt{25*71}=\sqrt{25}*\sqrt{71}=5\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-5\sqrt{71}}{2*1}=\frac{30-5\sqrt{71}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+5\sqrt{71}}{2*1}=\frac{30+5\sqrt{71}}{2} $
| 21x=72+3x | | x+8=2x+48 | | -5x+9=6x-2 | | 30x-18=31x | | 7x+5=-3x-5 | | x+5÷-2=10 | | 10x=6*7.5 | | 15x-75=21x-63 | | 11+2p=p | | 24x=242+18x | | 3-5-(x+4)=8(2x-3) | | -27=-7+4w | | (4w+1)(9+w)=0 | | 10+10b=40 | | 5m+15=50 | | (3x/3)=(0/3)2x-12=0 | | 48y=392+8y | | (3x/3)=(0/3) | | 48x=280+8x | | 3922=53*x | | 3x-2(-3)-6=0 | | 24y=216+8y | | Y=3/8x+5/3 | | 24y=8(27)+8y | | 2(m-3)+6m=3(9-m) | | 14=11/2x(2+5) | | 14=11/2x(25) | | 14=11/2h(2+5) | | 24x=144+8x | | 2+5h=10-3h | | 2(-3x-5)+8(6x-8)=0 | | 24x=408+12x |